Spark源码阅读(十):存储体系之block管理与调度

2020/09/09 Spark 共 20575 字,约 59 分钟

介绍Spark中的BlockManagerBlockManagerMaster

BlockManager

对之前介绍的那些存储体系的组件进行封装,提供对本地或远端节点上的磁盘及堆内堆外内存中block的管理

  • shuffleClient: shuffle客户端。用于和NettyBlockTransferService进行交互,以便当前节点将block上传到其他节点或者从其他节点下载block到本地。如果spark.shuffle.service.enabled为true(默认false)则使用ExternalShuffleClient替代blockTransferService
private[spark] val shuffleClient = if (externalShuffleServiceEnabled) {
  val transConf = SparkTransportConf.fromSparkConf(conf, "shuffle", numUsableCores)
  new ExternalShuffleClient(transConf, securityManager,
                            securityManager.isAuthenticationEnabled(), conf.get(config.SHUFFLE_REGISTRATION_TIMEOUT))
} else {
  blockTransferService
}

BlockManager中的成员变量基本是前几章所述的对象,这里只分析一些重要的方法。

  • initialize(): 初始化

    • 初始化blockTransferService, shuffleClient
    • spark.storage.replication.policy指定block复制策略,默认是RandomBlockReplicationPolicy
    • 生成BlockManagerId, shuffleServerId
    • 当启用了外部Shuffle服务,并且当前BlockManager所在节点不是Driver时,需要注册外部的Shuffle服务
    def initialize(appId: String): Unit = {
      blockTransferService.init(this)
      shuffleClient.init(appId)
    
      blockReplicationPolicy = {
        val priorityClass = conf.get(
          "spark.storage.replication.policy", classOf[RandomBlockReplicationPolicy].getName)
        val clazz = Utils.classForName(priorityClass)
        val ret = clazz.newInstance.asInstanceOf[BlockReplicationPolicy]
        logInfo(s"Using $priorityClass for block replication policy")
        ret
      }
    
      val id =
      BlockManagerId(executorId, blockTransferService.hostName, blockTransferService.port, None)
    
      val idFromMaster = master.registerBlockManager(
        id,
        maxOnHeapMemory,
        maxOffHeapMemory,
        slaveEndpoint)
    
      blockManagerId = if (idFromMaster != null) idFromMaster else id
    
      shuffleServerId = if (externalShuffleServiceEnabled) {
        logInfo(s"external shuffle service port = $externalShuffleServicePort")
        BlockManagerId(executorId, blockTransferService.hostName, externalShuffleServicePort)
      } else {
        blockManagerId
      }
    
      // Register Executors' configuration with the local shuffle service, if one should exist.
      if (externalShuffleServiceEnabled && !blockManagerId.isDriver) {
        registerWithExternalShuffleServer()
      }
    
      logInfo(s"Initialized BlockManager: $blockManagerId")
    }
    
  • getCurrentBlockStatus(): 获取目前最新的block信息,将block的状态信息封装为BlockStatus,增加内存占用大小和磁盘占用大小信息(一个block不可能部分在磁盘上部分在内存上),同时更新了一下StorageLevel(在putBytes()中调用因为存在内存保存不下从而储存在磁盘中)

    private def getCurrentBlockStatus(blockId: BlockId, info: BlockInfo): BlockStatus = {
      info.synchronized {
        info.level match {
          case null =>
          BlockStatus.empty
          case level =>
          val inMem = level.useMemory && memoryStore.contains(blockId)
          val onDisk = level.useDisk && diskStore.contains(blockId)
          val deserialized = if (inMem) level.deserialized else false
          val replication = if (inMem  || onDisk) level.replication else 1
          val storageLevel = StorageLevel(
            useDisk = onDisk,
            useMemory = inMem,
            useOffHeap = level.useOffHeap,
            deserialized = deserialized,
            replication = replication)
          val memSize = if (inMem) memoryStore.getSize(blockId) else 0L
          val diskSize = if (onDisk) diskStore.getSize(blockId) else 0L
          BlockStatus(storageLevel, memSize, diskSize)
        }
      }
    }
    
  • getStatus(): 与getCurrentBlockStatus()功能一样,只是没有更新StorageLevel

  • reportAllBlocks(): 遍历所有block,调用BlockManagerMaster.updateBlockInfo()方法报告所有block信息

    private def tryToReportBlockStatus(
      blockId: BlockId,
      status: BlockStatus,
      droppedMemorySize: Long = 0L): Boolean = {
      val storageLevel = status.storageLevel
      val inMemSize = Math.max(status.memSize, droppedMemorySize)
      val onDiskSize = status.diskSize
      master.updateBlockInfo(blockManagerId, blockId, storageLevel, inMemSize, onDiskSize)
    }
    
    private def reportAllBlocks(): Unit = {
      logInfo(s"Reporting ${blockInfoManager.size} blocks to the master.")
      for ((blockId, info) <- blockInfoManager.entries) {
        val status = getCurrentBlockStatus(blockId, info)
        if (info.tellMaster && !tryToReportBlockStatus(blockId, status)) {
          logError(s"Failed to report $blockId to master; giving up.")
          return
        }
      }
    }
    
  • reportBlockStatus(): BlockManagerMaster报告block信息。如果没有注册则调用asyncReregister()方法另起线程调用reregister()BlockManagerMaster中注册

    private def reportBlockStatus(
      blockId: BlockId,
      status: BlockStatus,
      droppedMemorySize: Long = 0L): Unit = {
      val needReregister = !tryToReportBlockStatus(blockId, status, droppedMemorySize)
      if (needReregister) {
        logInfo(s"Got told to re-register updating block $blockId")
        // Re-registering will report our new block for free.
        asyncReregister()
      }
      logDebug(s"Told master about block $blockId")
    }
    
  • reregister(): 向BlockManagerMaster重新注册BlockManager并报告所有block信息

    def reregister(): Unit = {
      logInfo(s"BlockManager $blockManagerId re-registering with master")
      master.registerBlockManager(blockManagerId, maxOnHeapMemory, maxOffHeapMemory, slaveEndpoint)
      reportAllBlocks()
    }
    
  • getLocalBytes(): 从本地存储体系中获得封装为BlockData的序列化的block

    • BlockInfoManager获得block的读锁
    • BlockInfo确定block的元信息,确定由MemoryStoreDiskStore获取。
    • 如果存储等级是未序列化,则优先从磁盘中读取以省去序列化的操作,否则从内存中读取未序列化的block进行序列化
    • 如果存储等级是序列化,则优先从内存中读取block,否则从硬盘中读取block(序列化)并尝试将该block放入内存中
    private def doGetLocalBytes(blockId: BlockId, info: BlockInfo): BlockData = {
      val level = info.level
      logDebug(s"Level for block $blockId is $level")
      // In order, try to read the serialized bytes from memory, then from disk, then fall back to
      // serializing in-memory objects, and, finally, throw an exception if the block does not exist.
      if (level.deserialized) {
        // Try to avoid expensive serialization by reading a pre-serialized copy from disk:
        if (level.useDisk && diskStore.contains(blockId)) {
          // Note: we purposely do not try to put the block back into memory here. Since this branch
          // handles deserialized blocks, this block may only be cached in memory as objects, not
          // serialized bytes. Because the caller only requested bytes, it doesn't make sense to
          // cache the block's deserialized objects since that caching may not have a payoff.
          diskStore.getBytes(blockId)
        } else if (level.useMemory && memoryStore.contains(blockId)) {
          // The block was not found on disk, so serialize an in-memory copy:
          new ByteBufferBlockData(serializerManager.dataSerializeWithExplicitClassTag(
            blockId, memoryStore.getValues(blockId).get, info.classTag), true)
        } else {
          handleLocalReadFailure(blockId)
        }
      } else {  // storage level is serialized
        if (level.useMemory && memoryStore.contains(blockId)) {
          new ByteBufferBlockData(memoryStore.getBytes(blockId).get, false)
        } else if (level.useDisk && diskStore.contains(blockId)) {
          val diskData = diskStore.getBytes(blockId)
          maybeCacheDiskBytesInMemory(info, blockId, level, diskData)
          .map(new ByteBufferBlockData(_, false))
          .getOrElse(diskData)
        } else {
          handleLocalReadFailure(blockId)
        }
      }
    }
    
    def getLocalBytes(blockId: BlockId): Option[BlockData] = {
      logDebug(s"Getting local block $blockId as bytes")
      // As an optimization for map output fetches, if the block is for a shuffle, return it
      // without acquiring a lock; the disk store never deletes (recent) items so this should work
      if (blockId.isShuffle) {
        val shuffleBlockResolver = shuffleManager.shuffleBlockResolver
        // TODO: This should gracefully handle case where local block is not available. Currently
        // downstream code will throw an exception.
        val buf = new ChunkedByteBuffer(
          shuffleBlockResolver.getBlockData(blockId.asInstanceOf[ShuffleBlockId]).nioByteBuffer())
        Some(new ByteBufferBlockData(buf, true))
      } else {
        blockInfoManager.lockForReading(blockId).map { info => doGetLocalBytes(blockId, info) }
      }
    }
    
  • getLocalValues(): 与getLocalBytes()类似,从本地存储体系中获得封装为BlockResult的未序列化的block

    • 优先从内存中获取未序列化的block,如果存储等级是序列化则反序列化block后返回
    • 其次从硬盘中获取block(序列化)。如果存储等级是序列化,则反序列化block后返回,并尝试将block(未序列化)放入内存中。如果存储等级是未序列化,则尝试将block(序列化)放入内存中,并反序列化block(序列化)后返回
  • getBlockData(): getLocalBytes()的进一步封装,返回ManagedBuffer如果获取不到block,调用reportBlockStatus()报告block不存在

    override def getBlockData(blockId: BlockId): ManagedBuffer = {
      if (blockId.isShuffle) {
     shuffleManager.shuffleBlockResolver.getBlockData(blockId.asInstanceOf[ShuffleBlockId])
      } else {
        getLocalBytes(blockId) match {
          case Some(blockData) =>
          new BlockManagerManagedBuffer(blockInfoManager, blockId, blockData, true)
          case None =>
          // If this block manager receives a request for a block that it doesn't have then it's
          // likely that the master has outdated block statuses for this block. Therefore, we send
          // an RPC so that this block is marked as being unavailable from this block manager.
          reportBlockStatus(blockId, BlockStatus.empty)
          throw new BlockNotFoundException(blockId.toString)
        }
      }
    }
    
  • putBytes(): 将block数据(已序列化)写入本地内存

    • 先调用doPutBytes(),里面定义了写入block的函数体作为putBody代码块传入doPut()中并调用doPut()
    • doPut()方法中,首先获得block的写锁,调用putBody执行block的写入
    • putBody代码块中,如果复制因子大于1,则创建异步线程调用replicate()将block复制并传输其他节点中。
      • 优先写入内存中,如果存储等级是未序列化,这时需要先反序列化,再调用MemoryStore.putIteratorAsValues()迭代放入内存中防止出现OOM。如果存储等级是序列化则直接调用MemoryStore.putBytes(),这里不需要用迭代方式写入内存是因为不需要额外的展开block的内存
      • 如果内存不足则写入磁盘。
      • 根据tellMasterBlockManagerMaster报告block状态并等待其他复制执行完毕
    • 如果写入成功并且需要保持读锁(当前任务写入block后需要读),则调用BlockInfoManager.downgradeLock()将写锁降级为读锁,否则释放当前任务的所有锁
    • 如果写入失败或者发生异常则调用removeBlockInternal()移除这个block,在MemoryStore, DiskStore, BlockInfoManager中清除这个block
    private def doPut[T](
      blockId: BlockId,
      level: StorageLevel,
      classTag: ClassTag[_],
      tellMaster: Boolean,
      keepReadLock: Boolean)(putBody: BlockInfo => Option[T]): Option[T] = {
    
      require(blockId != null, "BlockId is null")
      require(level != null && level.isValid, "StorageLevel is null or invalid")
    
      val putBlockInfo = {
        val newInfo = new BlockInfo(level, classTag, tellMaster)
        if (blockInfoManager.lockNewBlockForWriting(blockId, newInfo)) {
          newInfo
        } else {
          logWarning(s"Block $blockId already exists on this machine; not re-adding it")
          if (!keepReadLock) {
            // lockNewBlockForWriting returned a read lock on the existing block, so we must free it:
            releaseLock(blockId)
          }
          return None
        }
      }
    
      val startTimeMs = System.currentTimeMillis
      var exceptionWasThrown: Boolean = true
      val result: Option[T] = try {
        val res = putBody(putBlockInfo)
        exceptionWasThrown = false
        if (res.isEmpty) {
          // the block was successfully stored
          if (keepReadLock) {
            blockInfoManager.downgradeLock(blockId)
          } else {
            blockInfoManager.unlock(blockId)
          }
        } else {
          removeBlockInternal(blockId, tellMaster = false)
          logWarning(s"Putting block $blockId failed")
        }
        res
      } catch {
        // Since removeBlockInternal may throw exception,
        // we should print exception first to show root cause.
        case NonFatal(e) =>
        logWarning(s"Putting block $blockId failed due to exception $e.")
        throw e
      } finally {
        // This cleanup is performed in a finally block rather than a `catch` to avoid having to
        // catch and properly re-throw InterruptedException.
        if (exceptionWasThrown) {
          // If an exception was thrown then it's possible that the code in `putBody` has already
          // notified the master about the availability of this block, so we need to send an update
          // to remove this block location.
          removeBlockInternal(blockId, tellMaster = tellMaster)
          // The `putBody` code may have also added a new block status to TaskMetrics, so we need
          // to cancel that out by overwriting it with an empty block status. We only do this if
          // the finally block was entered via an exception because doing this unconditionally would
          // cause us to send empty block statuses for every block that failed to be cached due to
          // a memory shortage (which is an expected failure, unlike an uncaught exception).
          addUpdatedBlockStatusToTaskMetrics(blockId, BlockStatus.empty)
        }
      }
      if (level.replication > 1) {
        logDebug("Putting block %s with replication took %s"
                 .format(blockId, Utils.getUsedTimeMs(startTimeMs)))
      } else {
        logDebug("Putting block %s without replication took %s"
                 .format(blockId, Utils.getUsedTimeMs(startTimeMs)))
      }
      result
    }
    
    private def doPutBytes[T](
      blockId: BlockId,
      bytes: ChunkedByteBuffer,
      level: StorageLevel,
      classTag: ClassTag[T],
      tellMaster: Boolean = true,
      keepReadLock: Boolean = false): Boolean = {
      doPut(blockId, level, classTag, tellMaster = tellMaster, keepReadLock = keepReadLock) { info =>
        val startTimeMs = System.currentTimeMillis
        // Since we're storing bytes, initiate the replication before storing them locally.
        // This is faster as data is already serialized and ready to send.
        val replicationFuture = if (level.replication > 1) {
          Future {
            // This is a blocking action and should run in futureExecutionContext which is a cached
            // thread pool. The ByteBufferBlockData wrapper is not disposed of to avoid releasing
            // buffers that are owned by the caller.
            replicate(blockId, new ByteBufferBlockData(bytes, false), level, classTag)
          }(futureExecutionContext)
        } else {
          null
        }
    
        val size = bytes.size
    
        if (level.useMemory) {
          // Put it in memory first, even if it also has useDisk set to true;
          // We will drop it to disk later if the memory store can't hold it.
          val putSucceeded = if (level.deserialized) {
            val values =
            serializerManager.dataDeserializeStream(blockId, bytes.toInputStream())(classTag)
            memoryStore.putIteratorAsValues(blockId, values, classTag) match {
              case Right(_) => true
              case Left(iter) =>
              // If putting deserialized values in memory failed, we will put the bytes directly to
              // disk, so we don't need this iterator and can close it to free resources earlier.
              iter.close()
              false
            }
          } else {
            val memoryMode = level.memoryMode
            memoryStore.putBytes(blockId, size, memoryMode, () => {
              if (memoryMode == MemoryMode.OFF_HEAP &&
                  bytes.chunks.exists(buffer => !buffer.isDirect)) {
                bytes.copy(Platform.allocateDirectBuffer)
              } else {
                bytes
              }
            })
          }
          if (!putSucceeded && level.useDisk) {
            logWarning(s"Persisting block $blockId to disk instead.")
            diskStore.putBytes(blockId, bytes)
          }
        } else if (level.useDisk) {
          diskStore.putBytes(blockId, bytes)
        }
    
        val putBlockStatus = getCurrentBlockStatus(blockId, info)
        val blockWasSuccessfullyStored = putBlockStatus.storageLevel.isValid
        if (blockWasSuccessfullyStored) {
          // Now that the block is in either the memory or disk store,
          // tell the master about it.
          info.size = size
          if (tellMaster && info.tellMaster) {
            reportBlockStatus(blockId, putBlockStatus)
          }
          addUpdatedBlockStatusToTaskMetrics(blockId, putBlockStatus)
        }
        logDebug("Put block %s locally took %s".format(blockId, Utils.getUsedTimeMs(startTimeMs)))
        if (level.replication > 1) {
          // Wait for asynchronous replication to finish
          try {
            ThreadUtils.awaitReady(replicationFuture, Duration.Inf)
          } catch {
            case NonFatal(t) =>
            throw new Exception("Error occurred while waiting for replication to finish", t)
          }
        }
        if (blockWasSuccessfullyStored) {
          None
        } else {
          Some(bytes)
        }
      }.isEmpty
    }
    
    def putBytes[T: ClassTag](
      blockId: BlockId,
      bytes: ChunkedByteBuffer,
      level: StorageLevel,
      tellMaster: Boolean = true): Boolean = {
      require(bytes != null, "Bytes is null")
      doPutBytes(blockId, bytes, level, implicitly[ClassTag[T]], tellMaster)
    }
    
  • doPutIterator(): 与doPutBytes()类似,将未序列化的数据写入block。优先写到内存中,都是调用了迭代写入,内存不足则写到硬盘中

  • putIterator(): 实际调用了doPutIterator()

  • putBlockdata(): 实际调用了putBytes()

  • getMatchingBlockIds(): 获得blockInfoManagerdiskBlockManager中符合条件的block,DiskBlockManager中可能存在BlockInfoManager不知道的Block

    def getMatchingBlockIds(filter: BlockId => Boolean): Seq[BlockId] = {
      // The `toArray` is necessary here in order to force the list to be materialized so that we
      // don't try to serialize a lazy iterator when responding to client requests.
      (blockInfoManager.entries.map(_._1) ++ diskBlockManager.getAllBlocks())
      .filter(filter)
      .toArray
      .toSeq
    }
    
  • getRemoteBytes(): 从远端的blockManager获取序列化后的数据

    • BlockManagerMaster.getLocationsAndStatus()获得block位置信息,因为所有的远程block都注册在driver上
    • 解析出block大小和所有持有该block的BlockManagerId保存到blockLocations序列中
    • 调用sortLocations()blockLocations进行排序,先进行随机排序,再根据是否是同一机器,是否和本地同属于一个机架分成三部分,进行排序
    • 按顺序依次从排序好的locations位置调用blockTransferService.fetchBlockSync()获取block直到获取到block
    private def sortLocations(locations: Seq[BlockManagerId]): Seq[BlockManagerId] = {
      val locs = Random.shuffle(locations)
      val (preferredLocs, otherLocs) = locs.partition { loc => blockManagerId.host == loc.host }
      blockManagerId.topologyInfo match {
        case None => preferredLocs ++ otherLocs
        case Some(_) =>
        val (sameRackLocs, differentRackLocs) = otherLocs.partition {
          loc => blockManagerId.topologyInfo == loc.topologyInfo
        }
        preferredLocs ++ sameRackLocs ++ differentRackLocs
      }
    }
    
    def getRemoteBytes(blockId: BlockId): Option[ChunkedByteBuffer] = {
      logDebug(s"Getting remote block $blockId")
      require(blockId != null, "BlockId is null")
      var runningFailureCount = 0
      var totalFailureCount = 0
    
      // Because all the remote blocks are registered in driver, it is not necessary to ask
      // all the slave executors to get block status.
      val locationsAndStatus = master.getLocationsAndStatus(blockId)
      val blockSize = locationsAndStatus.map { b =>
        b.status.diskSize.max(b.status.memSize)
      }.getOrElse(0L)
      val blockLocations = locationsAndStatus.map(_.locations).getOrElse(Seq.empty)
    
      // If the block size is above the threshold, we should pass our FileManger to
      // BlockTransferService, which will leverage it to spill the block; if not, then passed-in
      // null value means the block will be persisted in memory.
      val tempFileManager = if (blockSize > maxRemoteBlockToMem) {
        remoteBlockTempFileManager
      } else {
        null
      }
    
      val locations = sortLocations(blockLocations)
      val maxFetchFailures = locations.size
      var locationIterator = locations.iterator
      while (locationIterator.hasNext) {
        val loc = locationIterator.next()
        logDebug(s"Getting remote block $blockId from $loc")
        val data = try {
          blockTransferService.fetchBlockSync(
            loc.host, loc.port, loc.executorId, blockId.toString, tempFileManager)
        } catch {
          case NonFatal(e) =>
          runningFailureCount += 1
          totalFailureCount += 1
    
          if (totalFailureCount >= maxFetchFailures) {
            // Give up trying anymore locations. Either we've tried all of the original locations,
            // or we've refreshed the list of locations from the master, and have still
            // hit failures after trying locations from the refreshed list.
            logWarning(s"Failed to fetch block after $totalFailureCount fetch failures. " +
                       s"Most recent failure cause:", e)
            return None
          }
    
          logWarning(s"Failed to fetch remote block $blockId " +
                     s"from $loc (failed attempt $runningFailureCount)", e)
    
          // If there is a large number of executors then locations list can contain a
          // large number of stale entries causing a large number of retries that may
          // take a significant amount of time. To get rid of these stale entries
          // we refresh the block locations after a certain number of fetch failures
          if (runningFailureCount >= maxFailuresBeforeLocationRefresh) {
            locationIterator = sortLocations(master.getLocations(blockId)).iterator
            logDebug(s"Refreshed locations from the driver " +
                     s"after ${runningFailureCount} fetch failures.")
            runningFailureCount = 0
          }
    
          // This location failed, so we retry fetch from a different one by returning null here
          null
        }
    
        if (data != null) {
          // SPARK-24307 undocumented "escape-hatch" in case there are any issues in converting to
          // ChunkedByteBuffer, to go back to old code-path.  Can be removed post Spark 2.4 if
          // new path is stable.
          if (remoteReadNioBufferConversion) {
            return Some(new ChunkedByteBuffer(data.nioByteBuffer()))
          } else {
            return Some(ChunkedByteBuffer.fromManagedBuffer(data))
          }
        }
        logDebug(s"The value of block $blockId is null")
      }
      logDebug(s"Block $blockId not found")
      None
    }
    
  • getRemoteValues(): 调用了getRemoteBytes()再进行反序列化

  • get(): 先调用getLocalValues()尝试从本地获取block,如果获取不到再调用getRemoteValues()从远端获取block

  • getOrElseUpdate(): 尝试调用get()获取block,如果不存在则调用makeIterator()计算block,调用doPutIterator()

    def getOrElseUpdate[T](
      blockId: BlockId,
      level: StorageLevel,
      classTag: ClassTag[T],
      makeIterator: () => Iterator[T]): Either[BlockResult, Iterator[T]] = {
      // Attempt to read the block from local or remote storage. If it's present, then we don't need
      // to go through the local-get-or-put path.
      get[T](blockId)(classTag) match {
        case Some(block) =>
        return Left(block)
        case _ =>
        // Need to compute the block.
      }
      // Initially we hold no locks on this block.
      doPutIterator(blockId, makeIterator, level, classTag, keepReadLock = true) match {
        case None =>
        // doPut() didn't hand work back to us, so the block already existed or was successfully
        // stored. Therefore, we now hold a read lock on the block.
        val blockResult = getLocalValues(blockId).getOrElse {
          // Since we held a read lock between the doPut() and get() calls, the block should not
          // have been evicted, so get() not returning the block indicates some internal error.
          releaseLock(blockId)
          throw new SparkException(s"get() failed for block $blockId even though we held a lock")
        }
        // We already hold a read lock on the block from the doPut() call and getLocalValues()
        // acquires the lock again, so we need to call releaseLock() here so that the net number
        // of lock acquisitions is 1 (since the caller will only call release() once).
        releaseLock(blockId)
        Left(blockResult)
        case Some(iter) =>
        // The put failed, likely because the data was too large to fit in memory and could not be
        // dropped to disk. Therefore, we need to pass the input iterator back to the caller so
        // that they can decide what to do with the values (e.g. process them without caching).
        Right(iter)
      }
    }
    
  • getSingle(): 调用了get()方法并返回第一个对象

  • putSingle(): 调用了putIterator()方法写入一个未序列化对象

  • dropFromMemory(): 从内存中删除block,如果可行,存储等级降级为硬盘

    private[storage] override def dropFromMemory[T: ClassTag](
      blockId: BlockId,
      data: () => Either[Array[T], ChunkedByteBuffer]): StorageLevel = {
      logInfo(s"Dropping block $blockId from memory")
      val info = blockInfoManager.assertBlockIsLockedForWriting(blockId)
      var blockIsUpdated = false
      val level = info.level
    
      // Drop to disk, if storage level requires
      if (level.useDisk && !diskStore.contains(blockId)) {
        logInfo(s"Writing block $blockId to disk")
        data() match {
          case Left(elements) =>
          diskStore.put(blockId) { channel =>
            val out = Channels.newOutputStream(channel)
            serializerManager.dataSerializeStream(
              blockId,
              out,
              elements.toIterator)(info.classTag.asInstanceOf[ClassTag[T]])
          }
          case Right(bytes) =>
          diskStore.putBytes(blockId, bytes)
        }
        blockIsUpdated = true
      }
    
      // Actually drop from memory store
      val droppedMemorySize =
      if (memoryStore.contains(blockId)) memoryStore.getSize(blockId) else 0L
      val blockIsRemoved = memoryStore.remove(blockId)
      if (blockIsRemoved) {
        blockIsUpdated = true
      } else {
        logWarning(s"Block $blockId could not be dropped from memory as it does not exist")
      }
    
      val status = getCurrentBlockStatus(blockId, info)
      if (info.tellMaster) {
        reportBlockStatus(blockId, status, droppedMemorySize)
      }
      if (blockIsUpdated) {
        addUpdatedBlockStatusToTaskMetrics(blockId, status)
      }
      status.storageLevel
    }
    
  • removeBlock(): 本地存储体系中删除一个block。实际调用了removeBlockInternal(),分别调用了MemoryStore.remove()DiskStore.remove()从内存和硬盘移除block,再调用BlockInfoManager.removeBlock()移除block的元信息
  • removeRdd(): 调用removeBlock()移除某个RDD的所有block
  • removeBroadcast(): 调用removeBlock()移除某个广播变量的所有block

BlockManagerMaster

对存在于Executor或Driver上的BlockManager进行统一管理,Executor与Driver关于BlockManager的交互都依赖于BlockManagerMaster

BlockManagerMaster通过前文所述的RPC组件进行通信。Driver上的BlockManagerMaster持有BlockManagerMasterEndpoint,所有的BlockManagerMaster持有自己的BlockManagerSlaveEndpoint。所有的BlockManagerMasterdriverEndpoint属性都持有BlockManagerMasterEndpointRpcEndpointRef。所有的BlockManagerMasterslaveEndpoint属性都持有BlockManagerSlaveEndpointRpcEndpointRef

REFERENCE

  1. Spark内核设计的艺术:架构设计与实现

文档信息

Search

    Table of Contents